An Automated Multi-spectral MRI Segmentation Algorithm Using Approximate Reducts
نویسندگان
چکیده
We introduce an automated multi-spectral MRI segmentation technique based on approximate reducts derived from the data mining paradigm of the theory of rough sets. We utilized the T1, T2 and PD MRI images from the Simulated Brain Database as a ”gold standard” to train and test our segmentation algorithm. The results suggest that approximate reducts, used alone or in combination with other classification methods, may provide a novel and efficient approach to the segmentation of volumetric MRI data sets.
منابع مشابه
Partial Volume Effect Detection in Mri Segmentation Based on Approximate Decision Reducts
Segmentation of Magnetic Resonance Imaging (MRI) is a process of assigning tissue class labels to voxels. One of the main sources of segmentation error is the partial volume effect (PVE) which occurs most often with low resolution images – with large voxels, the probability of a voxel containing multiple tissue classes increases. We propose a multistage algorithm for segmenting MRI images with ...
متن کاملA Hybrid Approach to MR Imaging Segmentation Using Unsupervised Clustering and Approximate Reducts
We introduce a hybrid approach to magnetic resonance image segmentation using unsupervised clustering and the rules derived from approximate decision reducts. We utilize the MRI phantoms from the Simulated Brain Database. We run experiments on randomly selected slices from a volumetric set of multi-modal MR images (T1, T2, PD). Segmentation accuracy reaches 96% for the highest resolution images...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملAutomatic Ischemic Stroke Lesion Segmentation in Multi-spectral MRI Images Using Random Forests Classifier
This paper presents an automated segmentation framework for ischemic stroke lesion segmentation in multi-spectral MRI images. The framework is based on a random forests (RF), which is an ensemble learning technique that generates several classifiers and combines their results in order to make decisions. In RF, we employ several meaningful features such as intensities, entropy, gradient etc. to ...
متن کامل